公開セミナー

日時:2009年9月7日(月曜日) 16:30-場所:理学部A507セミナー室 講師:岡崎龍太郎(同志社大学)

On Weber's Class Number Problem and Cyclotomic Unit

Let $f = 2^{n+2} \ge 8$ and $\beta_j = \cos(2j\pi/f)$. Set $K = \mathbf{Q}(\beta_1)$, $(\deg K = f/4)$ and $h_n = h(K)$. Weber calculated $h_1 = h_2 = h_3$ and conjectured $h_n = 1$ always holds for $n \ge 1$. Later Bauer and Masley showed $h_4 = 1$ and Linden showed $h_5 = 1$. Recently K.Horie initiated a project of proving this conjecture of Weber's. Fukuda and Komatsu made a progress.

They use the identity of h_n and the index of the cyclotomic units of K in the full unit group of K. Horie isolated a relative units among them and related them with the ratio h_n/h_{n-1} .

Therefore, a lower bound on the size of a relative units is important.

Then, $\beta_1 \mapsto \beta_k$ induces an automorphism of K, which sends $\alpha \in K$ to $\alpha^{\sigma(j)} \in K$. The field K is equipped with the metric $\alpha \in K \mapsto ||\alpha|| = \sqrt{(\alpha^{2\sigma(1)} + \alpha^{2\sigma(3)} + \dots + \alpha^{2\sigma(f/2-1)})/\deg K}$.

Let ϵ be a unit of K so that its norm to the unique subfield of K of degree deg K/2 equals -1. Then, we prove $\|\epsilon\| \ge f/2 - 1$.

世話人 秋山茂樹 (7481)